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Balance equations for electron transport in an arbitrary
energy band driven by an intense terahertz field.
Application to superlattice miniband transport
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Abstract. We suggest a balance-equation approach to hot-electron transport in a single arbitrary energy
band subject to an intense radiation field of terahertz (THz) frequency, including all the multiphoton
emission and absorption processes and taking account of realistic scatterings due to impurities and phonons.
This approach, which allows one to calculate THz-driving, time-averaging transport based on a set of time-
independent equations, provides a convenient method to study the effect of an intense THz electric field on
carrier transport in a nonparabolic energy band. As an example, these fully three-dimensional, acceleration-
and energy-balance equations are applied to the discussion of superlattice miniband transport at lattice
temperature T = 77 and 300 K driven by the THz radiation field of varying strengths. It is shown that
the current through a dc biased miniband superlattice is greatly reduced by the irradiation of an intense
THz electric field.

PACS. 72.30.+q High-frequency effects; plasma effects – 73.50.Mx High-frequency effects; plasma effects
– 72.20.Ht High-field and nonlinear effects

1 Introduction

Recently, the nonlinear dynamics of an electron gas driven
by intense terahertz (THz) electric fields has become a
central focus of many experimental and theoretical studies
in the literature [1–12]. Among many interesting phenom-
ena that have been reported, the effect of a THz radiation
on electron transport in two-dimensional (2D) semicon-
ductors and superlattices has attracted much attention.
It was reported experimentally that as in a quasi-two-
dimensional electron system in low temperature [3,4], the
current through a dc biased GaAs/AlAs miniband super-
lattice is also greatly reduced at room temperature when
the system is exposed to an intense radiation field of THz
frequency [6,7].

Theoretically, these can be referred to as the response
of the electron gas to a time-dependent electric field con-
sisting of a dc component and a large-amplitude high-
frequency sinusoidal component. Most of the existing the-
oretical treatments [9–12] of this issue were essentially
one-dimensional in nature and made use of the relaxation
time approximation. Despite the fact that the basic phys-
ical features of Bragg-diffraction-related phenomena fol-
low from a one-dimensional miniband structure, carrier
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scatterings by impurities, by phonons and among them-
selves make the problem truly three dimensional (3D)
and may lead to results that are significantly different
from those of one-dimensional models [13]. On the other
hand, although the time-dependent calculation based on
the three-dimensional balance equation [14] is a reliable
one to investigate the superlattice response to an alter-
nating electric field from low to medium-high frequency,
it has to follow the time-variation of the large amplitude
THz field and thus is rather time consuming. Further-
more, this approach has an upper limit of the applica-
ble frequency around 2 THz. A different balance-equation
method, which includes accurate microscopic treatments
of impurity and phonon scatterings and allows one to cal-
culate THz-driving dc transport based on a set of time-
independent rather than time-dependent equations, has
recently been developed for systems with parabolic energy
dispersion and successfully applied to two-dimensional
electron system [15]. However, since the major features
of superlattice vertical conduction (e.g. negative differen-
tial mobility) come from the nonparabolicity of the mini-
band and related Bragg scattering, to examine the effect
of a THz radiation on superlattice miniband conduction
we have to develop a method capable of dealing with arbi-
trary energy dispersion and including the effect of Bragg
scattering.
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2 Electrons in an general energy band driven
by a uniform time-dependent field

We consider a system consisting of N electrons moving in
a single energy band. They are scattered by phonons and
by randomly distributed impurities. If the single electron
state is described by a lattice wave vector k in a Brillouin
zone with the wave function ψk(r) and energy ε(k), the
effective Hamiltonian of the electron-phonon system can
be written in the form

H =
∑
j

ε(pj) +Hei +Hep +Hph, (1)

where pj is the momentum operator of jth electrons.
The phonon Hamiltonian Hph, the electron-impurity and
electron-phonon couplings, Hei and Hep, are given respec-
tively by

Hph =
∑
q,λ

Ωqλb
†
qλbqλ, (2)

Hei =
∑
q,a

u(q)eiq·raρq, (3)

Hep =
∑
q,λ

M(q, λ)φqλρq. (4)

In these equations, b†qλ (bqλ) is the creation(annihilation)
operator of phonon with wavevector q in branch λ hav-

ing frequency Ωqλ and φqλ = bqλ + b†−qλ is the phonon

field operator, ra stands for the impurity position, u(q)
and M(q, λ) are the Fourier representations of the im-
purity potential and the electron-phonon coupling matrix
element, and

ρq =
∑
j

eiq·rj (5)

stands for the electron density operator.
When a uniform dc (or slowly varying) electric field

E0 and a uniform sinusoidal radiation field of frequency ω
and amplitude Eω,

E(t) = E0 + Eω sin(ωt), (6)

are applied in the 2D plane, we can describe this electric
field by means of a vector potential A(t) and a scalar
potential ϕ(r) of the form

A(t) = (Eω/ω) cos(ωt), (7)

ϕ(r) = −r ·E0. (8)

Under the influence of such an electric field the Hamilto-
nian of the system becomes

H = He(t) +Hph +HI (9)

with HI ≡ Hei +Hep, and

He(t) =
∑
j

[ε (pj − eA(t)) + ϕ(rj)] . (10)

Following the procedure in reference [16], we define the
center-of-mass (CM) coordinate R by

R =
1

N

∑
j

rj . (11)

The rate of change of R, i.e. the CM velocity, is given by

V ≡ Ṙ = −i[R,H] =
1

N

∑
j

v(pj − eA(t))

=
1

N

∑
k,σ

v(k− eA(t))c†kσckσ, (12)

where

v(k) ≡ ∇ε(k) (13)

is the velocity function, c†kσ (ckσ) are creation (annihila-
tion) operators of electron in the lattice wavevector rep-
resentation, and the sum k runs over a Brillouin zone in
the k space. This velocity can be split into a slowing-
varying part V0 and a rapidly oscillating part VA due to
the high-frequency field,

V = V0 + VA, (14)

with

V0 =
1

N

∑
k,σ

v(k)c†kσckσ. (15)

We calculate the rate of change of the slowly-varying ve-
locity,

dV0

dt
= −i[V0,H]

=
eE

N
·
∑
k,σ

∇∇ε(k)c†kσckσ

−
i

N

∑
k,q,a

u(q)eiq·ra [v(k + q)− v(k)]ρkq

−
i

N

∑
k,q,λ

M(q, λ)φqλ[v(k + q)−v(k)]ρkq. (16)

We can also calculate the rate of change of the energy hs
determined by

hs ≡
1

N

∑
k,σ

ε(k)c†kσckσ, (17)

yielding

dhs

dt
= −i[hs,H]

= eE ·V0 −
i

N

∑
k,q,a

u(q)eiq·ra [ε(k + q)− ε(k)]ρkq

−
i

N

∑
k,q,λ

M(q, λ)φqλ[ε(k + q)− ε(k)]ρkq. (18)
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∞∑
n=−∞

J2
n([v(k + q)− v(k)] · eω) ei[ε(k+q)−ε(k)](t−t′) e−inω(t−t′) +

∑
m6=0

e−imωt

×

[
∞∑

n=−∞

Jn([v(k + q)− v(k)] · eω)Jn−m([v(k + q)− v(k)] · eω)ei[ε(k+q)−ε(k)](t−t′) e−inω(t−t′)

]
. (31)

Here ρkq is the lattice wavevector representation of the
electron density operator:

ρq =
∑
k

ρkq, (19)

ρkq =
∑
σ

g(k,q)c†k+qσckσ, (20)

with g(k,q) being a form factor determined by the elec-
tron wave function [16].

To calculate the statistical average of a physical quan-
tity we need the density of matrix of the transport state,
which can be solved from the Liouville equation by start-
ing from a parametrized initial state at time t = −∞,
in which the phonon system is in equilibrium at the lat-
tice temperature T and the relative electron system is in
equilibrium at an electron temperature Te with a shifted
lattice wavevector pd:

ρ̂|t=−∞ = ρ̂0 =
1

Z
e−Her/TeeHph/T , (21)

with

Her =
∑
j

ε̄(pj) =
∑
j

ε(pj − pd). (22)

Such a choice of the initial state was successfully used
in the balance-equation approach to transport in systems
with high carrier-density having an arbitrary energy dis-
persion without radiation field [16,17]. In this paper we are
still concerned mainly with such a kind of electron-phonon
systems, but under the influence of a high-frequency radi-
ation field.

In the presence of the radiation field, the zero-order
Hamiltonian of the electron-phonon system H0(t) =
He(t) +Hph is time-dependent. Nevertheless, the density
matrix can be obtained to the linear order in HI , and
the statistical average of a dynamical variable O can be
written in the form

〈O〉 = 〈O〉0 − i

∫ t

−∞
dt′〈[HI(t

′), O(t)]〉0, (23)

where 〈· · ·〉0 stands for the average with respect to the
initial density matrix ρ̂0, and, for any operator O, O(t) is
defined as

O(t) ≡ U†0 (t)OU0(t), (24)

where the evolution operator U0(t) obeys the equation

i
d

dt
U0(t) = H0(t)U0(t) (25)

and the condition U0(0) = 1.

3 Acceleration and energy balance equations

The acceleration and energy balance equations are
obtained by taking the statistical average of equations
(16, 18) to the linear order in HI according to equation
(23). Note that we have

ρq(t) =
∑
k,σ

g(k,q)ei[Sk+q(t)−Sk(t)]c†k+qσckσ, (26)

with

Sk(t) =

∫ t

0

ε(k− eA(τ))dτ. (27)

Furthermore, we make the following approximation in the
exponential factor in equation (26), which is valid for
short-period superlattices subject to a high frequency but
not too strong radiation field,

Sk+q(t)− Sk(t) = [ε(k + q)− ε(k)]t

− [v(k + q)− v(k)] · eω sin(ωt), (28)

where

eω ≡ eEω/ω
2. (29)

With this approximation, we have a factor of the form∫ t

−∞
dt′ei[ε(k+q)−ε(k)](t−t′)e−i[v(k+q)−v(k)]·eω[sin(ωt)−sin(ωt′)]

(30)

in the expressions for the frictional forces and energy-
transfer rates. Using the equality of the Bessel functions,

e−iz sinx =
∞∑

n=−∞

Jn(z)e−inx,

we can rewrite the exponential factor in equation (30) as
a sum of two terms:

See equation (31) above.

The first term is a function of (t − t′) only, as is the rest
parts of the integrands in the frictional acceleration and
the energy transfer rate. Thus, after the integration over
t′, it yields a contribution no longer dependent on t. The
second term appears to be rapidly oscillating at fundamen-
tal frequency ω and its harmonics, since the integration
over t′ renders its inner part (inside the bracket) a finite
constant value while leaving the outer oscillatory factor
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sp =
2πni

N

∑
k,q

|u(q)|2|g(k,q)|2
∞∑

n=−∞

J2
n ([v(k + q)− v(k)] · eω) nω

× δ (ε(k + q)− ε(k)− nω) [f(ε̄(k), Te)− f(ε̄(k + q), Te)]

+
4π

N

∑
k,q,λ

|M(q, λ)|2|g(k,q)|2
∞∑

n=−∞

J2
n ([v(k + q)− v(k)] · eω) nωδ (ε(k + q)− ε(k) +Ωqλ + nω)

× [f(ε̄(k), Te)− f(ε̄(k + q), Te)]

[
n

(
Ωqλ

T

)
− n

(
ε̄(k)− ε̄(k + q)

Te

)]
(41)

intact. As long as one measures the quantities which are
averaged over a time interval much longer than the period
of the radiation field, the contribution of the second term
is irrelevant. Furthermore, after a transient time period
the system should arrive at a time-dependent (oscillating)
steady state, in which the time average (over a time inter-
val much longer than the period of the radiation field) of
the statistical expectations of dV0/dt and dhs/dt vanish.
Therefore, we are left with the time-independent acceler-
ation and energy balance equations for the steady-state
transport under the THz drive.

eE0 · K + Ai + Ap = 0, (32)

and

eE · v0 − w + sp = 0. (33)

Here, we have identified

v0 = 〈V0〉 =
2

N

∑
k

v(k)f(ε̄(k), Te) (34)

as the average drift velocity of the system, and have de-
noted the inverse effective mass tensor

K = 〈K̂〉 =
2

N

∑
k

∇∇ε(k)f(ε̄(k), Te), (35)

where

f(ε, Te) = {exp[(ε− µ)/Te] + 1}−1 (36)

is the Fermi function at the electron temperature Te, and
µ is the chemical potential which should be determined
by the total number of electrons, N , according to

N = 2
∑
k

f(ε(k), Te). (37)

In equations (32–33),

Ai =
2πni

N

∑
k,q

|u(q)|2|g(k,q)|2 [v(k + q)− v(k)]

×
∞∑

n=−∞

J2
n ([v(k + q) − v(k)] · eω) (38)

×δ (ε(k + q)− ε(k) − nω) [f(ε̄(k), Te)− f(ε̄(k + q), Te)]

and

Ap =
4π

N

∑
k,q,λ

|M(q, λ)|2|g(k,q)|2 [v(k + q)− v(k)]

×
∞∑

n=−∞

J2
n ([v(k + q)− v(k)] · eω)

×δ (ε(k + q)− ε(k) +Ωqλ + nω)

× [f(ε̄(k), Te)− f(ε̄(k + q), Te)]

×

[
n

(
Ωqλ

T

)
− n

(
ε̄(k)− ε̄(k + q)

Te

)]
(39)

are the frictional accelerations due to impurity (with den-
sity ni) and phonon scatterings,

w =
4π

N

∑
k,q,λ

|M(q, λ)|2|g(k,q)|2Ωqλ

×
∞∑

n=−∞

J2
n ([v(k + q)− v(k)] · eω)

×δ (ε(k + q)− ε(k) +Ωqλ + nω)

× [f(ε̄(k), Te)− f(ε̄(k + q), Te)]

×

[
n

(
Ωqλ

T

)
− n

(
ε̄(k) − ε̄(k + q)

Te

)]
(40)

is the (per carrier) energy-transfer rate from the electron
system to the phonon system, and

See equation (41) above

is the (per carrier) rate of energy the electron system gains
from the radiation field through the multiphoton (absorp-
tion and emission) process in associate with electron in-
traband transitions. In the above balance equations, the
average drift velocity v0, the inverse effective mass ten-
sor K, the frictional accelerations Ai and Ap, the electron
energy-loss rate w and the energy-gain rate sp, are func-
tions of pd and Te. Ai, Ap, w and sp also depend on the
amplitude Eω and the frequency ω of the radiation field.
Thus, the effects of a radiation field on carrier transport
are included. For a system of known energy dispersion
ε(k), one can, from balance equations (32, 33), determine
pd and Te (thus the average drift velocity v0), when E0,
Eω and ω are given.

In the case without a radiation field (Eω = 0), we have
sp = 0, and Ai, Ap and w reduce to the corresponding
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Fig. 1. Average drift velocity v0(Eω) normalized by its value
at Eω = 0, v0(0), is plotted as a function of the amplitude of
the radiation field Eω at several different strength of the bias
dc field E0 = 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kV/cm, for a GaAs-
based superlattice having period d = 4.8 nm, miniband width
∆ = 56.8 meV, carrier sheet density Ns = 2.0× 1015 m−2 per
layer, and low-temperature linear dc mobility (in the absence
of the radiation field) µ0 = 10 m2/Vs. The lattice temperature
is T = 77 K, and the frequency of the radiation field is 1 THz.
The inset show the v0–E0 curve of the system at T = 77 K in
the absence of the radiation field.

expressions in reference [16], as it should be. Likewise,
for very high frequency we have a vanishing sp and the
same Ai, Ap and W as those without a radiation field,

due to the fact that J2
n behaves like ω−4|n|. This indicates

that a very-high frequency radiation field has no influ-
ence on intraband carrier transport. The present balance
equation approach is devised for use in the far-infrared or
THz regime of the electromagnetic waves, in which the
frequency of the radiation field is high enough such that
the identification of 〈V0〉 as the average drift velocity and
the approximation (28) are valid, yet the radiation field
can strongly affect the transport behavior of the carriers
in semiconductors. We expect that the balance equations
developed here apply to the time averaging, hot-electron
transport driven by an intense radiation field having fre-
quency of order of magnitude or higher than 1 THz.

4 Superlattice miniband transport subject
to an intense THz field

As a check of the formulation we apply the above equa-
tions to examine the effect of an intense THz radiation
on superlattice miniband transport. Consider a GaAs-
based planar superlattice in which electrons travel along
its growth axis (the z-direction) through the (lowest) mini-
band formed by periodically spaced potential wells and
barriers of finite height. The electron energy dispersion of
the system can be written as the sum of the transverse
energy εk‖ = k2

‖/2m, (k‖ ≡ (kx, ky)) and a tight-binding-

type miniband energy ε(kz) related to the longitudinal

Fig. 2. Average drift velocity v0 versus dc field E0 under the
influence of a radiation electric field of 3 THz frequency with
several different amplitude Eω = 0, 20, 30, 50 and 80 kV/cm in
a GaAs-based superlattice having period d = 4.8 nm, miniband
width ∆ = 50 meV, carrier sheet densityNs = 0.39×1015 m−2,
and low-temperature linear dc mobility (in the absence of the
radiation field) µ0 = 0.15 m2/Vs. The lattice temperature T =
300 K.

motion:

ε(k‖, kz) = εk‖ + ε(kz) (42)

with

ε(kz) =
∆

2
(1− cos kzd), (43)

where d is the superlattice period, −π/d < kz ≤ π/d, and
∆ is the miniband width. In view of the axial symmetry
of the system, when both the dc electric field E0 and the
sinusoidal high-frequency field Eω are polarized along the
superlattice growth axis, the carrier drift motion, i.e. pd
and vd, is in the z direction.

We have carried out numerical calculations in this con-
figuration for two GaAs-based quantum-well superlattices
respectively at lattice temperature T = 77 and 300 K.
We consider the elastic scattering due to randomly dis-
tributed background charged impurities, the scattering
due to the longitudinal and transverse acoustic phonons
(piezoelectric and deformation-potential interactions with
electrons), and the scattering due to polar-optic-phonons
(Fröhlich coupling with electrons). All the material con-
stants used in the calculation are typical values of bulk
GaAs which are the same as those given in reference [18].

Figure 1 shows the effect of a radiation field of 1 THz at
lattice temperature T = 77 K on the average drift velocity
of a GaAs-based superlattice having period d = 4.8 nm,
miniband width ∆ = 56.8 meV, carrier sheet density Ns =
2.0 × 1015 m−2 per layer, and low-temperature linear dc
mobility (in the absence of radiation field) µ0 = 10 m2/Vs.
For fixed strength of the dc field E0, the average drift
velocity v0(Eω) normalized by its value in the absence of
the THz field, v0(0), decreases with increasing strength of
the radiation field. This dc current suppression is stronger
at lower dc field than at higher dc field, and in the limit
of E0 → 0, the dc current at Eω = 20 kV/cm is less than
0.1 of its value at zero Eω.
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In Figure 2 we plot the average drift velocity v0

versus the dc field E0 for another GaAs superlattice at
lattice temperature T = 300 K under the influence of
a 3 THz radiation field having several different ampli-
tudes Eω = 0, 20, 30, 50 and 80 kV/cm. The parameters of
the superlattice are: period d = 4.8 nm, miniband width
∆ = 50 meV, carrier sheet density Ns = 0.39× 1015 m−2,
and low-temperature linear dc mobility (in the absence
of radiation field) µ0 = 0.15 m2/Vs. In the presence of
an intense radiation field, the v0–E0 curves, which exhibit
negative differential mobility, shift downward, in reason-
able agreement with the experimental results of Schom-
burg et al. [6] and Winnerl et al. [7].
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